Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Chinese Journal of Biotechnology ; (12): 1150-1161, 2020.
Article in Chinese | WPRIM | ID: wpr-826863

ABSTRACT

The aim of this study was to establish a novel technology using microalgae for NO₃⁻ removal from high concentration wastewater and conversion to algal proteins. The effects of cultivation modes and illumination modes on the biomass yield, NO₃⁻ assimilation rate and algal protein yield were first investigated in shaking flasks for mixotrophic cultivation of Chlorella pyrenoidosa, and subsequently the scale-up verification in 5-L photo fermenter was successfully conducted. Fed-batch cultivation without medium recycling was the best cultivation mode in shaking flask system, in which the highest biomass yield (35.95 g/L), the average NO₃⁻ assimilation rate (2.06 g/(L·d)) and algal protein content (up to 42.44% of dry weight) were achieved. By using a staged increase of light intensity as illumination modes, the specific growth rate of cells could be significantly promoted to the highest (0.65 d⁻¹). After a 128-hour continuous cultivation in a 5-L photo fermenter, the highest biomass yield and the average NO₃⁻ assimilation rate were reached to 66.22 g/L and 4.38 g/(L·d) respectively, with the highest algal protein content at 47.13% of dry weight. Our study could provide a photo fermentation technology of microalgae for highly efficient treatment of waste industrial nitric acid and/or high concentration nitrate wastewater. This microalgae-based bioconversion process could coproduce protein-rich microalgal biomass, which facilitates the resource utilization of these type wastewater by trash-to-treasure conversion.


Subject(s)
Algal Proteins , Biomass , Chlorella , Nitrates , Metabolism , Nitrogen , Metabolism , Wastewater , Chemistry , Water Purification , Methods
2.
Braz. arch. biol. technol ; 58(5): 676-685, tab, graf
Article in English | LILACS | ID: lil-764493

ABSTRACT

ABSTRACTOxytetracycline (OTC) production byStreptomyces rimosus was studied in batch and fed-batch cultures in shake flask and bioreactor levels using semi-defined medium. First, the effect of glucose concentration on OTC production and growth kinetics was studied intensively. The optimal glucose concentration in the medium was 15 g/L. Higher glucose concentrations supported higher biomass production by less volumetric and specific antibiotic production. Based on these data, cultivations were carried out at semi-industrial scale 15 L bioreactor in batch culture. At bioreactor level, cell growth and OTC production were higher compared to the shake flask culture by about 18 and 38%, respectively. During the bioreactor cultivation, glucose was totally consumed after only 48 h. Thus, the fed-batch experiment was designed for mono-glucose feeding and complete medium feeding to increase the OTC production by overcoming carbon limitations. The results showed that the fed-batch culture using constant glucose feeding strategy with rate of 0.33 g/L/h produced 1072 mg/L. On the other hand, feeding with complete medium resulted in 45% higher biomass but less OTC production by about 26% compared to mono-glucose fed culture. A further improvement in this process was achieved in by keeping the dissolved oxygen (DO) value at 60% saturation by cascading the glucose feeding pump with the DO controller. The later feeding strategy resulted in higher antibiotic production, reaching 1414 mg/L after 108 h.

3.
Rev. colomb. biotecnol ; 12(1): 77-93, jul. 2010. tab, graf
Article in English | LILACS | ID: lil-590647

ABSTRACT

Objective of this study was to optimize ergosterol production by yeast strain Saccharomyces cerevisiae with the use of computer controlled feeding of cultivation medium. Baker´s yeasts strain of Saccharomyces cerevisiae originally modified and selected as mutant D7 was further applied in an industrial scale and also in this investigation. Composition of cultivation medium was optimized with the use of a modified Rosenbrock´s method with regard to following components: glucose, yeast extract, ammonium sulphate, potassium dihydrogen phosphate, magnesium sulphate and calcium chloride. Cultivation of yeast culture was performed in 7 L laboratory bioreactor with a working volume of 5 L equipped with a control unit and linked to a computer, with dissolved oxygen tension measurement, oxygen and carbon dioxide analyzers. BIOGENES prototype software was created from the commercial control system Genesis for Windows 3.0 (GFW), from Iconics and CLIPS 6.04 for the PC-Windows platform. From various factors affecting sterol biosynthesis a specific growth rate was chosen. Feed rate was controlled according to mathematical model. In this case it dealt with a design of optimal profile of specific growth rate with consequent calculation of carbon dioxide profile. Sterol concentration in the dry biomass increased from 1.0 % up to 3 %.


El objetivo de este estudio fue optimizar la producción de ergosterol por una cepa de levadura Saccharomyces cerevisiae, controlando la alimentación de medio de cultivo por computadora. La cepa de levadura panadera Saccharomyces cerevisiae originalmente modificada y seleccionada como mutante D7 fue posteriormente utilizada a escala industrial y también para esta investigación. La composición del medio de cultivo fue optimizada usando el método modificado de Rosenbrock respecto a los siguientes componentes: glucosa, extracto de levadura, sulfato de amonio, fosfato dihidrógeno de potasio, sulfato de magnesio y cloruro de calcio. El cultivo de las células de levadura se llevó a cabo en un biorreactor de laboratorio de 7L con un volumen de trabajo de 5L, equipado con una unidad de control conectada a una computadora, con medición de la tensión de oxígeno disuelto y analizadores de oxígeno y dióxido de carbono. Un software prototipo BIOGENES fue creado a partir del sistema de control comercial Genesis para Windows 3.0 (GFW), de Iconics y CLIPS 6.04 para la plataforma de PC-Windows. A partir de varios factores que afectan la biosíntesis de esterol se escogió una tasa específica de crecimiento. La tasa de alimentación se controló mediante un modelo matemático. En este caso, se trató con un diseño de perfil óptimo de tasa de crecimiento específico con un consecuente cálculo del perfil de dióxido de carbono. La concentración de esterol en la biomasa seca se incrementó desde 1,0% hasta 3%.


Subject(s)
Ergosterol/analysis , Ergosterol/chemistry , Ergosterol , Yeasts/isolation & purification , Yeasts/growth & development , Yeasts/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL